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ABSTRACT 

The steady state flow is considered of a viscous conducting liquid in the inlet region 
of a straight channel with or without a transverse magnetic field, particularly the rate 
of approach of the flow to the Hartmann-Poiseuille patterns downstream. As usual 
R, R, , M denote the Reynolds number, magnetic Reynolds number, and Hartmann 
number respectively. When M = 0 the approach to Poiseuille flow is monotone for 
R > 16.92 . . . . but spatial oscillations occur for smaller R. In general the approach 
to the limiting pattern is exponential and the dependence of the exponents on R, R,,, , M 
is analysed. The exponents fall into two classes, one depending chiefly on R, M and 
the other on R, , M. For R > 1 the leading exponent is found to be approximately 
-(37.6.. + 2M3 R-l. 

1. INTRODUCTION 

We consider the steady state two-dimensional flow of a homogeneous, incom- 
pressible, viscous, conducting fluid in the inlet region of a straight channel in the 
presence of a transverse magnetic field. The flow will be assumed symmetric about 
the centre line of the channel. It is assumed that, at a great distance from the inlet, 
the flow tends to the Hartmann pattern. The purpose of this paper is to study the 
rate of approach to this limiting form as a function of the various physical param- 
eters. In the absence of a magnetic field the problem becomes very much simpler 
and the Hartmann pattern reduces to the familiar parabolic flow. The introduction 
of an infinitesimally weak field introduces new terms into the solution which may 
lead to an actual discontinuity in the rate of approach to the limit. 

The chief motivation for this study was to check the accuracy of a numerical 
solution obtained in [2] for the flow over the entire inlet region. 

1 The research reported in this paper has been supported by the Office of Scientific Research 
under Contract F61052-68-C-0053 through the European Office of Aerospace Research, U.S. 
Air Force. 
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In paragraph 6 we shall, where possible, compare the results obtained by the 
methods of this paper with those deducible from the complete numerical solution. 
The agreement is seen to be very good. 

Sparrow, Lin and Lundgren [5] have recently investigated the problem of inlet 
flow in the absence of a magnetic field. They were concerned with large Reynolds 
numbers and limited their discussion to the boundary layer equations. Subject to 
some additional simplifying assumptions they incidentally obtained quantitative 
results concerning the asymptotic behaviour of the flow. Snyder extended their 
methods to the magnetohydrodynamic problem. 

We should also mention earlier work by Shercliff [3] and Roidt and Cess [6], for 
the limiting case of large Reynolds numbers. The first of these authors simplified 
the treatment by assuming the problem equivalent to that of a linear transient. The 
latter authors attacked the boundary layer equations directly. No details are given 
as to their method of computation. 

A comparison of our results with those of these workers will be made below 
in paragraph 5.2. 

2. THE DIFFERENTIAL EQUATIONS 

Suppose that the width of the channel is 2a, the average longitudinal velocity u,, , 
the kinematic viscosity v, the fluid density p, electrical conductivity u and magnetic 
permeability p. We define 

R = % [Reynolds’ number] 

R, = 2ap0u, [Magnetic Reynolds’ number] 

We now go over to dimensionless coordinates (x, y, z), measuring lengths in 
units of a, and fluid velocities (u, v, w) in units of u, . The walls of the channel can 
now be taken as y = f 1. 

The governing equations can be written (see [2]) 

&I/% - h& = E, + $ P/3 (2.1) 

~vv2*cc - ~zv2*, = f v4+ + & (/3yv2#lz - &VylJ. 
m 

(2.2) 

Here # is the hydrodynamic stream function (U = #, , u = --I,&) and /I the z- 
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component of the magnetic vector potential in units of uB,, . E3 is the z-component 
of the electrostatic field, in units of uoBo , and is known to be a constant in two- 
dimensional flows. 

We suppose that the external magnetic field is constant and in the y-direction 
and that the magnetic permeability of the walls is finite. It follows that, for y = &l, 
fi must be proportional to x. We can therefore write the following boundary condi- 
tions: 

$4x, 1) = 1; z&, -1) = -1 (2.3) 
hk *1> = 0 (2.4) 
/3(x, $1) = -Mx (2.5) 

Es=-M (2-Q 

where M is a constant (the Hartmann number). We might mention that (2.6) is 
actually equivalent to assuming that the total net current perpendicular to the 
plane of flow is zero. (See Section II(d) in [2]). 

The solution of (2.1), (2.2) requires additional boundary conditions, namely 
those at the inlet (x = 0, say. See [2]). However, for the purposes of this paper, 
(2.3)--(2.6) are all that will be needed, except for one additional point. It is clear 
from (2.1), (2.2) and the boundary conditions (2.3X2.6) that should p(O, y) be an 
even function of y and #(O, y), &JO, y) both odd functions of y, then these 
properties will be conserved for all x > 0. We shall in fact make this additional 
assumption about the set-up at the inlet. 

Our boundary conditions represent an arbitrary choice out of an infinite manifold 
of possible conditions. They were chosen since they correspond to those used in 
our original numerical solution of the complete equations [2]. Any other set of 
boundary conditions would have led to a similar treatment except that the function 
obtained for d(a) [See para. 4 below] would have been different. 

3. BEHAVIOUR AT INFINITY 

We shall make the physical assumption that the flow field and magnetic field 
both tend to limiting forms as x tends to infinity. These will necessarily be of 
Hartmann type. It follows that 

#(co, y) = K [y cash M - & sinh My] 

and that, for large, x, 

(3.1) 

cash My - i ya sinh M I - Mx 
(3.2) 

= &.4x, Y> (say) 
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where 

K=( cash M - & sinh M 
> 

-1 
. 

Since it is our purpose to study the flow and magnetic field for large x we shall 
write 

4(x, Y> = #(Q Y> + G(x, Y) (3.4) 

P(x, Y> = B&9 Y) + f&G Y> (3.5) 

where we assume that squares and higher powers of G, Hand their derivatives may 
be neglected. We now substitute from (3.4), (3.5) into (2.1), (2.2) and obtain the 
equations 

-MG, + K(cosh M - cash M,) H, 

- y (sinh My - y sinh M) G, = f (Hz* + H,,) 
Tn 

-$ V4G - K(cosh M - cash My) VG, - M2K cash My . G, 

(3.6) 

+ T (sinh My - y sinh M) V2H, + g VH, - y sinh My * H, = 0. 
m 

We shall seek a solution of (3.6), (3.7) in the form 

G(x, Y> = e”%(y) 

H(x, y) = e”%(y). 

Making the necessary substitutions we get 

-Mg’(y) + olK(cosh M - cash My) h(y) 

(3.7) 

(3.8) 

(3.9) 

a2NY)l (3.10) + * (y sinh M - sinh My) g(y) = $ [h”(y) -I 
m 

f W”‘(y) + 2a2g”( y) + a”g( y)] - olK(cosh M - cash My)[g”( y) + a2g(y)l 

- ciKM2 cash My . g(y) + y (sinh My - y sinh M)[h”(y) -I- a22h(y)l 

-+RRn x [h”(y) + &Y(y)] - y sinh My * h(y) = 0. (3.11) 

According to our boundary conditions, we require solutions of (3.10), (3.11) such 
that g and h are symmetric and antisymmetric functions, respectively, and such that 

g(1) = g’(1) = h(1) = 0. (3.12) 
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The values of (Y for which a solution is possible (other than g = h = 0) constitute 
a discrete set. We are interested only in values of 01 with negative real parts and it is 
clear that the ultimate rate at which the flow tends to its limiting value is determined 
by the root or roots, the absolute value of whose negative real part is least, i.e. by 
the dominant eigenvalue. We shall denote by {an} the sequence of eigenvalues 
with negative real part arranged in non-increasing order of real part. 

4. DETERMINATION OF EIGENVALUES 

In accordance with our requirements above, we seek a solution of the form 

g(v) = f Yd2n+1 
?kO 

NY) = g %Y”” 
12=0 

(4.1) 

(4.2) 

Substituting (4.1), (4.2) into (3. lo), we obtain a recurrence relation 

?n+1 = ~?z,l(YO V'.., K 7 170 3***, %a, 4. (4.3) 

Similarly substitution into (3,ll) yields the relation 

'yn+1 = Qn+dYov-9 y?z, yo Y977n,179z+l,4. (4.4) 

The functions P,+l, Qn, are known and can be written down explicitly. It is 
easily seen in this way that the functions g(y), h(y) are uniquely determined if r), , 
y. , y1 , 01 are known. We can accordingly write 

and 

g(u) = &?o 3 Yo > 712 013 Y> (4.5) 

NY) = Mrlo 9 M 3 Yl, 4 Y>- (4.6) 

Since (3. IO), (3.11) are linear and homogeneous we can express the general solution 
for given (Y as a linear combination of three particular solutions. We take 

&Yl(% Y> = dl, 090, % Y), h(% Y> = NL 090, 4 Y) 

gd% Y> = ido, 1,0, % Y), h(% Y) = w, LO, % Y> 

got% Y) = ido, 0, 1, 01, Y), h,(% Y) = NO, 0, 1, 04 Y>. 
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The general solution can then be written 

(4.7) 

WI = i u%(% Y). (4.8) 
i=l 

Substituting (4.7), (4.8) into (3.12) gives us three homogeneous linear equations for 
Al, AZ, AS with determinant, d(a), depending only on ~1. We have therefore to 
solve the equation 

d(a) = 0. W) 

To compute d(a) for a given 01 we used recurrence relations (4.3)-(4.4), 
programmed for an electronic computer, which also executed the necessary 
summations. 

The general method for solving (4.9) was first to find the approximate location 
of a root in the complex or-plane by plotting the level lines of Re d(a) and Im d(a). 
Following this first approximation the root was located more exactly by successive 
application of the method of regula falsi. Once roots had been obtained corre- 
sponding to a set of values of the physical parameters they were taken as first 
approximations to the roots corresponding to neighbouring values of the param- 
eters. This helped to speed the systematic search for the eigenvalues. Indeed it 
rendered the computing time for each new set of roots effectively negligible. All 
of this work was executed on the 1604-A computer of Control Data Corporation 
at the Weizmann Institute of Science. The results are discussed in paragraph 
5 below. 

5. NUMERICAL RESULTS 

It might help to clarify the description of our results if we begin with some par- 
ticular cases in which (4.9) becomes simpler and can be treated by special methods. 

5.1 M = 0 (HYDRODYNAMIC CASE) 

In this case the eigenvalues depend only on R, and some of their values as a 
function of R are shown in Table I. Its determination was comparatively simple 
since only #(x, y) had to be considered and only one differential equation (5.1) 
was needed with boundary conditions g(1) = g’(1) = 0. 

g”” + 2dg” + a*g - &R{(l - y2)(g” + a”g) + 2g} = 0. (5.1) 
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TABLE I 

THE Two LEADING EXPONENTS AS FUNCTION OF R FOR THE SPECJAL CASE M = 0 
(HYDRODYNAMIC CASE) 

0 
0.5 
5 

10 

R, = 16.92126 
20 
50 

100 
200 
500 

1000 
R-m 

-3.748838 & 1.3843391’ 
-3.67669 f 1.39141i 
-3.15444 f 1.296601’ 
-2.80083 & 1.0073i 

-2.63200 
-1.90100 
-0.749171 
-0.375787 
-0.188075 
-0.0752515 
-0.0376270 

-44.5029 
-38.20200 
-37.4585 
-37.5787 
-37.6150 
-37.6257 
-37.6270 
- 37.62779 

-6.94998 & 1.676101’ 
-6.88416 i 1.676121 
-6.36088 f 1.520471 
-5.9359 & 1.0082i 

-3.37034 f 0.5169i 
-2.667 f 0.2571 
-1.15391 -115.391 
-0.57535 -115.070 
-0.23010 -115.05 
-0.115045 -115.045 

-115.0453 

In Table I, we note that c+R, ol,R change hardly at all for R 3 100. Indeed 
boundary layer theory would require olR to be sensibly constant for large R. The 
entry corresponding to “R -+ co” was, in fact, obtained by setting a = olR in 
(5.1) and letting R tend to infinity. 

The value R,[=16.92126] was found to be critical in the sense that 01~ was real 
for R > R, and complex for R < R, . The implied existence of spatial oscillations 
for flow at high viscosity would at first sight seem contrary to what might have been 
expected. However one should bear in mind that here it is precisely the viscosity 
which constitutes the “restoring force” while the “resistance” to it stems from the 
inertial forces. 

5.2 LARGE VALUES OF R 

The magnetohydrodynamic case of very large R can also be discussed separately. 
We multiply (3.11) by R and then set 01 = a/R in both this equation and (3.10). 
Ignoring terms of order l/R in both equations we obtain 

&h” + Mg’ = 0 
112 (5.2) 

- F [co& M - co&, &fy]g” - aKM2 yh mY g = 0. (5.3) 
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aKM2 cash My 
2 

g = 0 (5.4) 

odd solution of this equation 

g 
,,,I - M2g” - F [cash M - cash My] g” - 

Again we seek a so that there shall be a nontrivial 
with g(1) = g’(1) = 0. The entire process is similar to that already described and 
we note that the only relevant physical parameter is M. We show in Table II 
a,(i = 1,2) as a function of M, ai say. It appears from this table that a,(M) can 
be approximated very closely by a linear function of M2 and the fourth column 
of the table shows that, for large R, we may write 

% W- 
37.62779 + 2M2 

R ’ (5.5) 

TABLE II 

LIMITING BEHAVIOUR OF LEADING EXPONENTS FOR LARGE R 

M a,(M) = f;mmor,R 
+ 

a,(M) = grnmor,R 
a,(M) - a,(O) 

- 
+ M” 

0 -37.62719 

0.05 -37.63297 

0.1 -37.6484 

1 - 39.6841 

2 -45.1916 

3 -55.8165 

5 -86.9517 

10 -228.9460 

15 -467.113 

20 - 806.463 

25 - 1245.45 

30 - 1784.69 

-115.0453 - 
-115.0527 2.07 

-115.0720 2.06 

-117.6713 2.06 

-125.1978 2.04 

- 136.9069 2.02 

- 170.9687 1.97 

-316.9010 1.91 

-556.598 1.91 

-894.758 1.92 

- 1332.83 1.93 

-1871.16 1.96 

We have not been able to find a complete analytical justification for the formula 
(5.5). However the following observations seem relevant. 

When Mis small we may develop (5.4) in powers of M [cf. (5.10), below] and see 
at once that a is of the form A + BM2 + O(M4). Again for M> 1 the limiting 
form of (5.4) becomes 

g”” - (M2 + ;) g” = 0 

leading to the series of eigenvalues -S8n2x2 - 2M2 (n = 0, 1, 2,...). 
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In the work of Sparrow, Lin and Lundgren [5] on the simplified Navier-Stokes 
equations they obtained the set of eigenvalues 

a, = -2efiz 2enz (n = 1, 2,...) (5.6) 

where the &‘s are the successive roots of 

tan 19 = e. (5.7) 

In Snyder’s extension [4] of their method to the magnetohydrodynamic problem 
he obtained 

a, = -2tin2 - 2M2. (5.8) 

This would lead to a, = -40.38 - 2M2, a, = -119.36 - 2M2 which may be 
compared with (5.5) and with the entries in Table II. Since (5.6) and (5.8) were 
obtained from equations linearized over the entire domain the agreement with 
Table II must be regarded as highly satisfactory. 

The results given by Roidt and Cess [6] for the case of large R are in 
close agreement with those shown in Table II, and with equation (5.5). In terms of 
our variables they find that a,(O) = -37.50, a,(2) = -45.68, a,(4) = -69.56, 
a,(6) = -107.90. 

Shercliff’s earlier work([3], based on a totally different set of simplifying assump- 
tions, also led to (5.8). He also took up the case of perturbations to # which were 
even functions of y, and for these obtained the exponents -2n2n2 - 2M2. 

We refer here also to the solution of the Navier-Stokes equations by Bodoia and 
Osterle [l]. Analysis of their results leads, for M = 0, to the estimate a, M -36. 

5.3 SMALL HARTMANN NUMBER 

Consider the case M < 1. We develop (3. lo), in powers of M retaining only the 
first few terms 

Mg’ - -+ y (I - y”) 11 + g (3 + yz)/ g 

- c+ -y”)jl +g(ll +5y++++ a2h] = O(M*) (5.9) 
n 

f [g”” + 2012g” + dg] - 

- ++~(1+5Y~)~g-+l-Y2)]1+~(3+Y~)~[h”+iu2hl 

+ -$ [ii”’ + a2h’] - $ . 3My 11 + $ (3 + 5Y2)/ h = O(M4). (5.10) 
m 
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If we had neglected all except the lowest order terms we should have obtained 

h” + a2h - &X&(1 - y2)h = 0 (5.11) 

g”” + 2a2g” + cx”g - folR{(l - vZ)(g” + 0128) + 2g) = 0. (5.12) 

These equations, as also their boundary conditions, are now uncoupled and the 
eigenvalues of each can be obtained separately. 

TABLE III 

DOMINANT HYDRODYNAMIC AND MAGNETIC ROOTS 
AS FUNCTIONS OF R FOR M = 1, R, = 10’ o 

0 

1000 
2000 
moo 
7000 
8ooo 
8200 
8300 
8340 
8348 
8400 
8600 
9ooo 

10000 
11000 
12000 
12500 
12700 
12720 
12800 
13000 
14000 
16000 
20000 
25000 
30000 
4oOOO 

- .042748 1 -.0038010 
(*) -.040629 i .0046165i -.0038577 

- .0198082 - Al038638 
- 3077894 -.0038961 
- Ml54742 - .0039565 
- .0046701 - AM40572 
- II&l4945 -.0041128 
-.0043810 -.OM1685 
- .0043067 - .0042201 
- .0042666 - DO42556 
-.0042465 + .000107771’ 
-.0041920 f .00022652i 
-.0040904 & .00033088i 

I:;;;;:; ; .gg;g 

-.0035445 * .00025842i 
-.0034790 I-t .0001462Oi 
-.0034543 + .00004431i 
- .003448 - a03455 
- .0033530 --.0035315 
- .0032507 - .0035866 
- .0029434 -.0036785 
-.0025369 -.0037355 
-.0020100 - a037759 
-.0016009 - .0038072 
-.0013312 (***) -.0038509 f .000138171 
- BOO9963 --.0037720 -.00295936 

n In the range of R where some ajH’ - some oij”) the two “interact” to produce a pair of 
complex roots. (*) Interaction between LY:“), @‘); (**) Interaction between @), CX:~); (***) 
Interaction between ai”), CX~~). Note the insensibility of @‘) to changes in R. 
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Let {%l tM1} be the eigenvalues of (5.11) with negative real part arranged in des- 
cending order of real part. We denote by {a, IHI} the corresponding set of eigenvalues 
of (5.12). The significance of these roots is that, for the uncoupled equations (5.1 l), 
(5.12), {c$~]} represents the “magnetic roots” and {aLHI} the “hydrodynamic roots”. 

When M is finite the equations (5.1 l), (5.12) have to be replaced by the coupled 
equations (3. lo), (3.11). The eigenvalues of this pair can differ considerably from 
those corresponding to A4 M 0 but are still made up of two main sets. One set, to 
which we continue to refer as the “magnetic roots”, denoted by (cyA”)>, depend only 
slightly on R. The remaining roots, i.e. the “hydrodynamic roots” which we denote 
{olkHa,}, are insensitive to changes in R, . The only roots of both sequences which are 
substantially affected by the coupling are those magnetic roots which are close in 
value to hydrodynamic roots, and conversely. The effect of the coupling is to replace 
real roots by conjugate pairs of complex roots. 

TABLE IV 

LEADING MAGNETIC ROUTS FOR LIMITING CASE M -+ 0 

RI3 [Ml [MI 
% % 

0 2. 
3a 

= -1.5707963 - = 
2 2 

-4.7123890 

0.0001 - 1.5707637 -4.7123631 

0.1 - -1.538530 -4.686618 

1 - 1.277940 -4.461262 

10 -0.357565 -2.79140 

100 -0.0376819 -0.425182 

1000 -0.00377035 -0.0428595 

TABLE V 

M A1 = lim a,R, A, = lim azR, 
R m*cc hZ,CC 

0 -3.7703 -42.8631 

0.05 -3.77056 -42.86449 

0.1 -3.77122 -42.86875 

1 -3.85288 -43.51112 

2 -4.05773 -46.1950 

3 -4.299 - 52.22 

5 -4.69487 - 82.376 

10 -5.1766 
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In Table III we show the dominant eigenvalues of each set for & = 109, M = 1 
and a range of values of R. The “interaction” leading to the complex roots is seen 
clearly in this table. 

We note that when M = 0 the magnetic roots are irrelevant and IX, = CY:~,“’ = 
#‘I. Some of these roots were shown in Table I. (Note that (5.12) is identical with ?I 
(5.1)). For small positive M the leading hydrodynamic root will become 
ajH) = OI[~] + O(M”). However we now have to take into account also the mag- 
netic roots. Hence LYE will be ajH) or CX~~) whichever has the larger real part. In case 
Re olfHl < Re (utyl, (Ye will change discontinuously as M+ 0. This situation is 
found to occur if RJR is not too small or, for any & , if R < 24. 

We show in Table IV some of the magnetic roots in the limiting case M = 0 for 
various values of R, . 

5.4 SMALL Ri 

We shall now consider the case Ri < 1. We see clearly from (3.10), (3.11) that 
h(y) must be approximately of the form A cos ay and so, in view of (3.12) 

@f) = n -(n - if) 77 + OUL) (5.13) 

Whether or not OI:~) will be the dominant eigenvalue will depend on the hydro- 
dynamic roots, as already indicated. For R > 1, we can use (5.5) and it appears 
therefore that 

(i) if (37.62779 + 2M2)/R < n/2, the dominant root will still be given by 
(5.5), but 

(ii) if (37.62779 + 2M2)/R > r/2, the dominant root will now be -~r/2. 

5.5 LARGE MAGNETIC REYNOLDS NUMBER 

To deal with the case RM > 1 we put 01 = A/RM, h = R,H, g = G. After 
a little rearrangement and keeping only terms of highest order in RM the equations 
(3.10), (3.11) become 

2H” + AK(cosh My - cash M)H + MG’ + 3AK(sinh My - y sinh M)G = 0 

(5.14) 

2MH”’ + AK(sinh My - y sinh M)H” - AKM2 sinh My * H + G”” = 0. 

(5.15) 
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We note incidentally that R does not appear in (5.14), (5.15) and so, as in paragraph 
5.2, the eigenvalues depend only on M. We show in Table V the leading eigenvalues 
as a function of M for R, > 1. 

When R, R, are both large the situation is as shown in Table III above. 

5.6 GENERAL DESCRIPTION 

After the above discussion we can now present (Table VI) the two leading eigen- 
values corresponding to various values of M, R, RM. This table should make clear 
the main features already mentioned. For example, we note that (Ye hardly changes 
as we go down a column, i.e. with change of R, until we come to the point where 
Re @) < Re ai”) and cyl then changes over from IX:“’ to OI:~). We see also from 
Table VI that CX:“’ can be approximated with reasonable accuracy in the range 
O<R,<l,O<M<5by 

CL;"' = - +i- + (0.326 - 0.007M - O.O3R,)& (5.16) 

[cf. (5.13)]. 

6. COMPARISON WITH COMPLETE SOLUTION 

Elsewhere [2] we have reported the numerical solution of the complete hydro- 
dynamic equations (2.1), (2.2) for the inlet region of a straight channel. Indeed part 
of the motivation for the work reported in the present paper was to check the accu- 
racy of this numerical solution. From a study of the numerical results we were able 
in some cases to determine fairly accurately the exponential (real or complex) rate 
of approach to the limiting flow. We show in Table VII the results of this analysis 
for a number of sets of values of R, M, R, , along with the theoretical values as 
determined from the linearized equations by the methods described above. 

Determination of the eigenvalues from the complete numerical solution is fraught 
with difficulty. One difficulty is due to the interference of higher order terms which 
necessitates the examination of 4(x, y) for very large x. However in this region 
ti(cf4 Y> - Icl(xv r> is small so that effects of round-off and truncation errors can be 
significant. This difficulty is particularly serious for R < R, when the solution is an 
oscillatory function of x and only the order of magnitude of OI:~) could be obtained. 
In the cases where it was possible to make the determination the agreement is seen 
to be good. 

58r/3/4-6 
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TABLE VII 

COMPARISON WITH DOMINANT Roars AS ESTIMATED FROM NUMERICAL 
SOLUTION OF COMPLETE EQUATIONS 

Hydromagnetic roots obtained Exponent as obtained from 
by methods of current paper complete numerical solution 

Fluid velocity Magnetic 
R M &a Lp ay Field Field 

0 0 -3.149 f 1.3841’ 
0.5 0 -3.677 f 1.391i 
5 0 -3.154 f 1.2971 

20 0 -1.910100 
50 0 -0.749171 

100 0 -0.375787 
200 0 -0.188075 
500 0 -0.0752515 
20 1 .OOOl -2.1067 
20 2 .OOOl -2.577 rt 0.6653 
20 1 1 -2.0990 
20 1 10 -2.279 & 0.18791 
20 1 50 

200 1 1 -0.1985204 

- 1.570766 
- 1.570768 
-1.28924 
-0.36549 
-0.0769101 

f 

Order of 
magnitude 
of-3&i 
-1.91 
-0.74 
-0.37 
-0.188 
-0.075 
-2.1 -1.4 
-3 -1.4 
-2.2 -1.1 
-0.35 -0.35 
-0.076 -0.075 
-0.20 -0.2 
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